Staging Development of Edmonton Citywide Dynamic Traffic Assignment Model

Xu Han, Rajib Sikder, Peter Xin and Arun Bhowmick
City Planning, City of Edmonton

Agenda

- DTA Model Development
 - Demand preparation
 - Network building/debugging
 - Calibration and validation
- Example of Case Study
- Results and Applications
- Findings and recommendations

What is Dynamic Traffic Assignment (DTA)

Traffic operational analysis for Transportation Planning projects – intersection volume forecast, MoEs

Macro

Meso

Micro

Dynamic Traffic Assignment (DTA)

Model Background

- Why we develop?
 - > Increasing demand of DTA for planning operational inquires
 - Develop and maintain DTA models piece by piece is time consuming
- How we developed? Staging Development
 - > Corridor level
 - > Inner Ring Road subarea
 - > Valley Line LRT subarea
 - ➤ City Wide

DTA Staging Development

Base Year Demand Preparation

1 - Subarea Extraction

- Subarea followed city boundary
- 6 classes of vehicles
- Transit, pedestrian, and bike network not included
- Further network adjustment
- Finer zones to match DTA zone system

2 - Traffic Count Data Collection

- Data type
 - -Turning movement counts (preferred)
 - -Link volumes
- Year & Season
 - -2015>2014>2013>2012
 - -Fall>Spring
- Time period
 - -AM (6:30-9:30)
 - -PM (15:30-18:30)
- •Time interval
 - -15min and 1h
- Vehicle class
 - -Auto and light truck
 - -Truck

Intersections	Links	Ramps	Gates
418	29	219	36

Count locations

- Major signalized intersections
- River crossing
- Freeway ramps

3 - Traffic Counts Import

- Semi-automation process: Python+VBA
- Converted intersection turning volumes to link volumes
- Aggregated 15 min interval to 1 hour

Network Debugging

- Explored locations far away from identity line in scatter plot
- Made sure count data are appropriate at those locations
- Reviewed and checked parameters:
 - Zone access and locations
 - Link modes
 - Number of lanes
 - Link length
 - Volume-delay function
 - Link posted speed
 - Turn bans
 - Turn penalty function
- Re-assigned traffic and evaluated how model volumes matched counts

Demand Adjustment

- Only if after network debugging, assignment still needs to be improved
- Toolbox in EMME
- Objectives:
 - To minimize the difference between observed counts and assigned volumes
 - To minimize the difference between adjusted matrix and original matrix

Demand Import

- Prepared O-D matrix for DTA import
 - Pre peak (15:30-16:30)
 - Peak (16:30-17:30)
 - Post peak (16:30-17:30)

City Wide DTA Model Network

- Start from Synchro Network
 - Major Arterial
 - Signal Time
 - Stop/Yield Control

Nodes: 11647

Links: 29748

Signals: 1059

Transit Lines: 383

Zones: 1119

PM Peak Demand Structure

- · Vehicle classes were characterized with effective length, response time and maximum speed
- EMME truck demand (in EPCU) required conversion to vehicles

Network Issues:

- number of lanes
- node movement priority rules
- signal timing plans

Capacity Issues:

- protective and permissive capacities
- follow-up times

Model Convergence is the comparison between average travel time and shortest travel time for all O-D pairs

Possible to find which O-D pair(s) has high relative gaps

Traffic short cutting

- 30s Left turn penalty
- 10s right turn penalty

Link distance cost

- Local road (sec): 0.05*length(m)
- AHD (sec): 0.01*length(m)
- Link truck cost: 3min every 100m for non truck routes

- <u>Auto Link Cost</u>= ptime + turn penalty cost + link distance cost
- <u>Truck Cost</u>= ptime + turn penalty cost + link truck cost

Select Link and O-D path analysis helps identify and adjust traffic demand at corridor level

Calibration Results

Calibration Results

Case Study – Groat Road Rehabilitation Analysis

Project Goal

- Predict the traffic impact of Groat Rd rehab construction

Study Tasks

- Investigate traffic pattern shift
- Estimate congestion at bottleneck
- Compare travel time between construction and baseline

Case Study – Groat Road Rehabilitation Analysis

Construction

Baseline

Time and Resource

2015 PM City Wide DTA Model (built on top of Inner Ring Road model):

- Sub area demand preparation: ~3 months
- Counts import: ~3 months
- DTA network building: ~6 months
- Model calibration: ~3 months

~15 months (one FTE)

Computer Configuration

- Computer configuration
 - Intel® Xeon® CPU E5-2650 v4 (2.20GHz, 30MB) (2processors)
 - 1TB SATA and 256GB SSD
 - 128 GB RAM
 - NVIDIA M2000
 - Windows 7 Professional 64bit

8 min @ per iteration (about 50 iterations for 2015 PM, about 6.5 hr)

DTA Applications in Edmonton

- Freeway/Arterial Corridor Planning Analysis
- LRT and Transit Planning
- Neighborhood Traffic Calming
- Construction Detour (e.g. Road/Bridge Closure)
- Travel Paths for Micro-Simulation Models
- Traffic Demand Management
- Land Use Changes

Findings and Recommendations

- Staging development is an effective way for larger scale DTA (e.g. City wide) knowledge, skills, confidence
- Calibration based on 15min traffic counts/ speed profile may be ideal, however it could be over calibrated due to counts noises
- Demand adjustment is useful, but only after error coding free of network, counts and calibration parameters (via iterative checking/debugging)
- Appropriate finer zone system and access locations are critical for DTA model development
- Automation tools greatly improve data quality and processing efficiency
- Traffic counts should be consistent (e.g. appropriate weekdays and months, avoid construction or special events)
- Dynameq is a very effective platform to model traffic of recurrent situation over the time.

